1. INTERIOR REGULARITY OF CLASSICAL SOLUTIONS II

Let us define

$$\|u\|_{H^{2}(\Omega)} = \left(\int_{\Omega} u^{2} + |\nabla u|^{2} + |\nabla^{2}u|^{2} dx\right)^{\frac{1}{2}}.$$
(1)

Theorem 1. Suppose that $u \in C^{\infty}(\Omega)$ solves $\Delta u = f$ for $f \in C^{\infty}(\Omega)$. Then, for each compact set $K \subset \Omega$, there exists some constant *C* depending on *K*, Ω , *f* such that

$$||u||_{H^2(K)} \leq C ||f||_{L^2(\Omega)}.$$

Proof. Let us choose a compact set $\overline{K} \subset \Omega$ such that $K \subset \operatorname{int}(\overline{K})$, namely $K \subset \overline{K} \subset \Omega$ and they does not share their boundaries. Then, we choose a cut-off function $\eta \in C_c^{\infty}(\overline{K})$ such that $\eta = 1$ on K. Let us define

$$v = -\nabla_1(\eta^2 \nabla_1 u).$$

Then, we have

$$\begin{split} \int_{\bar{K}} \nabla u \cdot \nabla v dx &= -\int_{\bar{K}} \nabla_i u \nabla_1 \nabla_i (\eta^2 \nabla_1 u) dx \\ &= \int_{\bar{K}} (\nabla_1 \nabla_i u) \big[2\eta \nabla_i \eta \nabla_1 u + \eta^2 \nabla_i \nabla_1 u \big] dx \\ &\geq \int_{\bar{K}} -\frac{1}{2} \eta^2 |\nabla \nabla_1 u| - 2 |\nabla \eta|^2 |\nabla_1 u|^2 + \eta^2 |\nabla \nabla_1 u|^2 dx \\ &\geq \frac{1}{2} \int_{\bar{K}} \eta^2 |\nabla \nabla_1 u|^2 dx - C \int_{\bar{K}} |\nabla u|^2 dx. \end{split}$$

On the other hand,

$$\int_{\bar{K}} \nabla u \cdot \nabla v dx = -\int_{\bar{K}} \Delta u v dx = -\int f v dx = \int_{\bar{K}} f \left[\eta^2 \nabla_1 \nabla_1 u + 2\eta \nabla_1 \eta \nabla_1 u \right] dx$$
$$\leqslant \int_{\bar{K}} f^2 \eta^2 + \frac{1}{4} \eta^2 |\nabla_1 \nabla_1|^2 + f^2 + \eta^2 |\nabla_1 \eta|^2 |\nabla_1 u|^2 dx.$$

Combining the inequalities above yields

$$\int_{K} |\nabla \nabla_{1} u|^{2} dx \leq \int_{\bar{K}} \eta^{2} |\nabla \nabla_{1} u|^{2} dx \leq C \int_{\bar{K}} f^{2} + |\nabla u|^{2} dx.$$

Since we have $\int_{\bar{K}} |\nabla u|^2 dx \leq C \int_{\Omega} f^2 dx$ by the result in the previous lecture notes, we can conclude

$$\int_{K} |\nabla \nabla_{1} u|^{2} dx \leq C \int_{\bar{K}} f^{2} dx.$$

This implies the desired result.

2. HILBERT SPACE

A metric space (X, d) is a pair of a set X and a distance d, where $d : X \times X \to \mathbb{R}$ satisfies

$$d(x, y) \ge 0, \text{ and } d(x, y) = 0 \text{ iff } x = y.$$

$$d(x, y) = d(y, x),$$

$$d(x, y) \le d(x, z) + d(y, z).$$

A normed vector space $(X, \|\cdot\|)$ is a vector space X equipped with a norm $\|\cdot\|$ satisfying

$$||x|| \ge 0$$
, and $||x|| = 0$ iff $x = 0$.
 $||\lambda x|| = |\lambda| ||x||$,
 $||x + y|| \le ||x|| + ||y||$,

where $\lambda \in \mathbb{R}$.

We observe that a normed vector space $(X, \|\cdot\|)$ is a metric space with the distance $d(x, y) = \|x - y\|$.

Definition 2. A Banach space is a complete normed vector space.

We recall that a complete metric space X is that a Cauchy sequence $\{x_m\}_{m=1}^{\infty} \subset X$, namely $d(x_i, x_j) \to 0$ as $i, j \to +\infty$, converges to a point $\bar{x} \in X$.

An inner product space (X, \langle, \rangle) is a vector space *X* equipped with an inner product $\langle, \rangle : X \times X \to \mathbb{R}$ satisfying

$$\langle x, x \rangle \ge 0$$
, and $\langle x, x \rangle = 0$ iff $x = 0$.
 $\langle x, y \rangle = \langle y, x \rangle$,
 $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$,

where $a, b \in \mathbb{R}$. We observe that an inner product space (X, \langle, \rangle) is a normed space with the norm $||x|| = \sqrt{\langle x, x \rangle}$.

Definition 3. A Hilbert space is a complete inner product space.

3. PROJECTION

Definition 4. Given an inner product space *X*, *x*, *y* \in *X* is orthogonal or normal if $\langle x, y \rangle = 0$. Given a closed subspace *V* \subset *X*, we denote by *V*^{\perp} the orthogonal complement

$$V^{\perp} = \{ x \in X : \langle x, v \rangle = 0 \text{ for all } v \in V \}.$$

Definition 5. We denote by $P_V x$ the projection of x into a closed subspace V such that

$$||P_V x - x|| = \inf_{v \in V} ||v - x||.$$

Theorem 6 (Theorem 6.12 in the textbook). Let V be a closed subspace of a Hilbert space H. Then, for all $x \in H$, there exists a unique projection $P_V x$. Moreover, $P_V x = x$ iff $x \in V$, and $Q_v x = x - P_V x \in V^{\perp}$ so that

$$\|x\|^{2} = \|P_{V}x\|^{2} + \|Q_{V}x\|^{2}.$$
(2)

Definition 7. Suppose that a toplogical space *X* has a sequence $\{x_m\} \subset X$ such hat any non-empty open subset $U \subset X$ contains some x_i . Then, we call *X* is separable.

Proposition 8. A separable space contains a dense sequence $\{x_m\} \subset X$.

Proposition 9. $L^2(\Omega)$ and $H^1_0(\Omega)$ are separable.

We recall that the Stone-Weierstrass theorem shows that C^0 is separable. Since C^0 is dense in L^2 , L^2 is also separable. Moreover, H_0^1 is a subset of L^2 . Thus, H_0^1 is also separable.

Definition 10. An orthogonal basis in a separable Hilbert space *H* is a sequence $\{w_m\} \subset H$ such that $\langle w_i, w_j \rangle = \delta_{ij}$ and $x = \sum_{i=1}^{\infty} \langle x, w_i \rangle w_i$ for all $x \in H$.

By using the projection and the Gram-Schmidt process, we can obtain the following proposition.

Proposition 11 (Proposition 6.18 in the textbook). A separable Hilbert space H admits a countable orthogonal basis.