
1. Interior regularity of classical solutions II

Let us define

}u}H2pΩq “
`

ˆ
Ω

u2 ` |∇u|2 ` |∇2u|2dx
˘

1
2 . (1)

Theorem 1. Suppose that u P C8pΩq solves ∆u “ f for f P C8pΩq. Then, for each compact set

K Ă Ω, there exists some constant C depending on K,Ω, f such that

}u}H2pKq ď C} f }L2pΩq.

Proof. Let us choose a compact set K̄ Ă Ω such that K Ă intpK̄q, namely K Ă K̄ Ă Ω and they does

not share their boundaries. Then, we choose a cut-off function η P C8c pK̄q such that η “ 1 on K. Let

us define

v “ ´∇1pη
2∇1uq.

Then, we have ˆ
K̄
∇u ¨ ∇vdx “´

ˆ
K̄
∇iu∇1∇ipη

2∇1uqdx

“

ˆ
K̄
p∇1∇iuq

“

2η∇iη∇1u` η2∇i∇1u
‰

dx

ě

ˆ
K̄
´

1
2
η2|∇∇1u| ´ 2|∇η|2|∇1u|2 ` η2|∇∇1u|2dx

ě
1
2

ˆ
K̄
η2|∇∇1u|2dx´C

ˆ
K̄
|∇u|2dx.

On the other hand,ˆ
K̄
∇u ¨ ∇vdx “´

ˆ
K̄
∆uvdx “ ´

ˆ
f vdx “

ˆ
K̄

f
“

η2∇1∇1u` 2η∇1η∇1u
‰

dx

ď

ˆ
K̄

f 2η2 `
1
4
η2|∇1∇1|

2 ` f 2 ` η2|∇1η|
2|∇1u|2dx.

Combining the inequalities above yields
ˆ

K
|∇∇1u|2dx ď

ˆ
K̄
η2|∇∇1u|2dx ď C

ˆ
K̄

f 2 ` |∇u|2dx.

Since we have
´

K̄ |∇u|2dx ď C
´
Ω

f 2dx by the result in the previous lecture notes, we can conclude
ˆ

K
|∇∇1u|2dx ď C

ˆ
K̄

f 2dx.

This implies the desired result.
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2. Hilbert space

A metric space pX, dq is a pair of a set X and a distance d, where d : X ˆ X Ñ R satisfies

dpx, yq ě 0, and dpx, yq “ 0 iff x “ y.

dpx, yq “ dpy, xq,

dpx, yq ď dpx, zq ` dpy, zq.

A normed vector space pX, } ¨ }q is a vector space X equipped with a norm } ¨ } satisfying

}x} ě 0, and }x} “ 0 iff x “ 0.

}λx} “ |λ|}x},

}x` y} ď }x} ` }y},

where λ P R.

We observe that a normed vector space pX, }¨}q is a metric space with the distance dpx, yq “ }x´y}.

Definition 2. A Banach space is a complete normed vector space.

We recall that a complete metric space X is that a Cauchy sequence txmu
8
m“1 Ă X, namely

dpxi, x jq Ñ 0 as i, j Ñ `8, converges to a point x̄ P X.

An inner product space pX, x, yq is a vector space X equipped with an inner product x, y : XˆX Ñ R

satisfying

xx, xy ě 0, and xx, xy “ 0 iff x “ 0.

xx, yy “ xy, xy,

xx, ay` bzy “ axx, yy ` bxx, zy,

where a, b P R. We observe that an inner product space pX, x, yq is a normed space with the norm

}x} “
a

xx, xy.

Definition 3. A Hilbert space is a complete inner product space.
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3. Projection

Definition 4. Given an inner product space X, x, y P X is orthogonal or normal if xx, yy “ 0. Given a

closed subspace V Ă X, we denote by VK the orthogonal complement

VK “ tx P X : xx, vy “ 0 for allv P Vu.

Definition 5. We denote by PV x the projection of x into a closed subspace V such that

}PV x´ x} “ inf
xPV
}v´ x}.

Theorem 6 (Theorem 6.12 in the textbook). Let V be a closed subspace of a Hilbert space H. Then,

for all x P H, there exists a unique projection PV x. Moreover, PV x “ x iff x P V, and Qvx “ x´PV x P

VK so that

}x}2 “ }PV x}2 ` }QV x}2. (2)

Definition 7. Suppose that a toplogical space X has a sequence txmu Ă X such hat any non-empty

open subset U Ă X contains some xi. Then, we call X is separable.

Proposition 8. A separable space contains a dense sequence txmu Ă X.

Proposition 9. L2pΩq and H1
0pΩq are separable.

We recall that the Stone-Weierstrass theorem shows that C0 is separable. Since C0 is dense in L2,

L2 is also separable. Moreover, H1
0 is a subset of L2. Thus, H1

0 is also separable.

Definition 10. An orthogonal basis in a separable Hilbert space H is a sequence twmu Ă H such that

xwi,w jy “ δi j and x “
ř8

i“1xx,wiywi for all x P H.

By using the projection and the Gram-Schmidt process, we can obtain the following proposition.

Proposition 11 (Proposition 6.18 in the textbook). A separable Hilbert space H admits a countable

orthogonal basis.
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